The split-GFP system

Create a new detection system based on protein complementation

Finding complementing pairs of GFP

Only (GFP 10-11 + GFP 1-9) and (GFP 11 + GFP 1-10) pairs from Superfolder GFP showed complementation and fluorescence.

The Split-GFP tagging system

Cabantous S. et al. (2005). "Protein tagging and detection using engineered self-assembling fragments of green fluorescent protein". Nat. Biotechnology 23(1), 102-7.

Improving GFP 1-10 solubility

In vivo complementation of the two GFP fragments

The large fragment 1-10 was engineered to improve performance and solubility

Small GFP 11 tag was engineered to minimize its effect on passenger folding and solubility

In vitro complementation

A calibration © with a standard protein enables the quantification of soluble protein from assay fluorescence

In vivo complementation

2 independently-inducible plasmids in *E. coli*

CO

SEQ

kD 66.3**−**

36.5**—**

21.5**—**

31

Co-induction of tagged protein & detection fragment

Sequential induction of tagged protein then detection fragment

total e__>ssion

Applications of Split-GFP

- High throughput Expression Screening: soluble, insoluble, total expression
- Assay of proteins during workup & purification
- Refolding assays: find optimal refolding conditions
- Find soluble mutants of a protein (directed evolution)
- Find soluble domains of a protein